
66 Parallaxis Version 2 User Manual

OPENINPUT name

Redirect all following input from the file with the given name, which may be a string,
a char constant or a char variable (string terminated by termS). If name is the empty
string, the name is read from the terminal with the prompt "in> ". The file identified
by name is opened and substitutes the standard input stream. Done is TRUE if the file
could be opened, FALSE otherwise.

CLOSEINPUT

If input was redirected from a file, this command closes the file and switches back to
standard input.

OPENOUTPUT name

In analogy to OPENINPUT, this procedure redirects output to the file identified by
name. If the name is read from the terminal, the prompt is "out> ". Done is TRUE if
the file could be opened, FALSE otherwise.

CLOSEOUTPUT

If output was redirected to a file, this command closes the file and switches back to
standard output.

ERROR string

This procedure writes an error message containing the constant string to the console
and stops program execution.

Debug Procedures

DEBUG vardesc string AS declaration

vardesc and declaration define a block of variables that will be printed together with
the supplied string. The value of each variable is written on a separate line. Character
arrays declared "AS Cnum" are considered a string. Strings appear in the output
enclosed in quotes and may extend over several lines. For each parenthesis-level out-
put is indented by two characters. Every repetition of a parenthesized list of sub-dec-
larations is followed by '|' if that list declares more than one variable. Variants in a
union are terminated by a comma, union ends are marked with a semicolon. Un-ini-
tialized values are shown in the form 'X : ??', where X is one of the type characters
B, C, I or R. In strings, special representations of characters like termS or
CHR(255) are enclosed in '<' and '>'. If vardesc is a vector, the blocks of as many
PEs as possible are written side by side.

TRACE vardesc string AS declaration

The arguments are identical to the DEBUG procedure, but vardesc may not be an indi-
rect variable with vector index. The block defined by vardesc and declaration will be
written to the output stream (together with the supplied string) when the TRACE pro-
cedure is executed, and every time one of the variables in the block is assigned a new
value. The output format is identical to the DEBUG command, but shows the com-
mand causing the value change in addition.

7. The PARZ Intermediate Language 67

NOTRACE [vardesc]

Without argument, it disables tracing on all blocks; with an argument, all blocks
beginning with vardesc will no longer be traced. The same restriction for indirect
variables applies as for the TRACE procedure.

7.7 Graphics Interface

The following commands are integrated in the language PARZ. All commands set the prede-

fined variable Done according to the success of the operation.

s_vardesc ":=" OPENW s_VarConst_x s_VarConst_y

s_VarConst_x and s_VarConst_y are two values in the range (0.0 ... 1.0), denoting
width and height of the graphical output window, relative to the maximum screensize.
A unique window number is assigned to the left hand side argument.

s_vardesc ":=" OPENABSW s_VarConst_x s_VarConst_y

s_VarConst_x and s_VarConst_y are two integer values, denoting width and height of
the graphical output window in absolute pixel values. A unique window number is
assigned to the left hand side argument.

SELECTW s_VarConst

The window with number s_VarConst is activated for graphical output.

WSIZE s_vardesc_x s_vardesc_y

Width and height in pixels of the active window are assigned to s_vardesc_x and
s_vardesc_y.

CLOSEW s_VarConst

The window with number s_VarConst is closed.

SETCOLOR vardesc

vardesc is the first of three continuous variables, containing the values of the new
actual drawing color. vardesc may be a scalar or a vector value (setting an individual
color for each PE).

SETPIXEL VarConst_x VarConst_y

In case of scalar arguments, the pixel with coordinates (VarConst_x, VarConst_y) is
set to the actual drawing color. In case of vector arguments, each PE sets a pixel at the
supplied coordinates, either in the same or an individual color, depending on the pre-
vious call of SETCOLOR.

s_vardesc ":=" GETPIXEL s_VarConst_x s_VarConst_y

The left hand side argument is the first of three continuous INTEGER variables
receiving the color values (red, green, blue) of the specified pixels.

68 Parallaxis Version 2 User Manual

MOVETO s_VarConst_x s_VarConst_y

Defines the start position for the next call of LINETO.

LINETO s_VarConst_x s_VarConst_y

Draws a line in the actual drawing color from the last position reached with
MOVETO or LINETO to position (s_VarConst_x, s_VarConst_y).

DRAW s_VarConst1 [s_VarConst2 [s_VarConst3]]

Writes the scalar value of s_VarConst1 to the selected window at the actual position.
With only one argument, a standard format is used for values of each type (boolean,
char, integer, real, string). With two arguments, s_VarConst2 is the minimal output
length for integer or real values. If s_VarConst1 is a character variable, it is the first of
a character array containing a string of maximal length s_VarConst2. Three argu-
ments are used to write real values in a fix-point notation. Here, s_VarConst2 is the
minimal output width and s_VarConst3 is the fraction width.

8. Compiling Executables 69

8 Compiling Executables

Two compilers have been implemented. Compiler pz2c takes a PARZ file as input and gener-

ates portable Kernighan&Ritchie C programs to build faster stand-alone applications. The sec-

ond compiler, pz2mpl, takes a PARZ file as input and generates a parallel MPL program for

the massively parallel MasPar MP-1 system. A compiler for the Connection Machine 2 is just

being completed.

Both compilers should only be used after testing a Parallaxis program with the PARZ

simulator / debugger, because no run-time checks are generated.

The pseudo-comment $R {proc_ident} in a previously translated Parallaxis program may be

used for both compilers to generate run time measurements. The CPU-times for all given pro-

cedures are measured while executing the program and are printed into a file with name:

<executable_name>.timing .

8.1 PARZ to C

The compiler is started by typing

pz2c {options} inFilename [-o exeFilename]

Compiling PARZ programs into C programs gives two advantages:

• compiled Parallaxis/PARZ programs are faster than interpreted ones

• compiled Parallaxis/PARZ programs are easily portable, since almost every
computer system comes with a C compiler.

Options start with a '-' sign. All characters after the '-' sign up to the next white space are treated

as options. A compiler call may contain more than one option.

The options for both compilers are:

d use double precision for data type REAL

 enum set the maximum number of reported error messages

 g activate global timing

m call the C/MPL compiler for existing code

O invoke the optimizer (capital O) of the C/MPL compiler

p first run the Parallaxis compiler

r remove generated C/MPL source code after compiling it

R activate recording mode

t generate trace information for all PARZ labels (only for debugging)

u hand option "-u" over to the Parallaxis compiler

v verbose mode, give information about the compiling

wnum set the maximum number of reported warnings

x create an identifier cross-reference file. This file will have the extension .ref

z don't call the C/MPL compiler after generating the C/MPL source code

o <executable> set the name of the generated executable file

70 Parallaxis Version 2 User Manual

The compiler takes files ending with .z as input files. If the filename entered has not this exten-

sion, the compiler adds .z and tries to open this file.

If option -p is provided or the inFilename has the extension .p, the Parallaxis compiler is in-

voked with the options -dmnrx, i.e. DEBUG and TRACE commands are ignored, no PARZ

code for operand-checking in mathematical operations, range-check, or NIL-pointer de-refe-

rentiation is generated.

The name of the generated C program is built by removing the standard extension from the in-

Filename and adding the extension .c to it. The name of the generated executable file is nor-

mally built by removing the standard extension from the inFilename. If option -o

exeFilename is provided, this filename is used for the executable program.

Note, that no DEBUG or TRACE information is supported, i.e. DEBUG and TRACE state-

ments in the input file are skipped and a warning is reported.

To create a stand-alone executable file, two files are required:

• pz2c.h the C include file

• libpz2cs.a the linking library for single precision on a UNIX system;
libpz2cd.a the linking library for double precision on a UNIX system

 (See option "-d" for arithmetic precision of data type "real".)

If you cannot copy these files in the standard search paths for include files and libraries, set the

environment variables PZ2C_HEADER and PZ2C_LIB to the directories, which contain these

files. E.g., if the file libpz2c.a resides in the directory /home/smith/lib, the variable

PZ2C_LIB must have the value '/home/smith/lib'.

8.2 PARZ to MPL

The compiler is started by typing

pz2mpl {options} inFilename [-o exeFilename] for programs with much data

 pz2mpls {options} inFilename [-o exeFilename] for programs with few data

These compilers generate MPL programs from PARZ intermediate code. MPL (MasPar Paral-

lel Application Language) is a company-specific data parallel extension of C. Options and

behaviour of this compiler are identical to the PARZ-to-C compiler, refer to section 8.1 for de-

tails.

The name extension for generated MPL programs is .m . Depending on whether compiling

with pz2mpl ("large model") or pz2mpls ("small model"), the include and library file names

are as follows:

Include Files:

pz2mpl-fe.h, pz2mpl-dpu.h large model MPL

pz2mpls.h small model MPL

8. Compiling Executables 71

Libraries:

libpz2mpl-fes.a, libpz2mpl-dpus.a large model, single prec.

libpz2mplss.a, libgraphs.a small model, single prec.

libpz2mpl-fed.a, libpz2mpl-dpud.a large model, double prec

libpz2mplsd.a, libgraphd.a small model, double prec.

The large model always requires linking of two libraries, one for the front end (FE)
and one for the data parallel unit (DPU). The small model requires one or two librar-
ies, depending on whether the Parallaxis application program contains calls of graph-
ics routines or not. For the large model, this additional graphics library is already
included in the pz2mpl-fe library.

As for the PARZ-to-C compiler, depending on the selection of single or double preci-
sion arithmetic for numbers of type "real" (see option "-d"), the appropriate libraries
have to be used.

For MPL, the environment variables are called

PZ2MPL_HEADER (PZ2MPLS_HEADER, resp.) and

PZ2MPL_LIB (PZ2MPLS_LIB, resp.).

Compiler pz2mpl generates a C program for the front-end and an MPL program for the Mas-

Par back-end. All scalar data resides in the front-end. This allows large virtual data space, but

requires a lot of overhead for data exchange between front-end system and MasPar. For pro-

grams that get by with the MasPar's very limited 114 KB scalar data memory, the compiler

pz2mpls generates much faster code, for all scalar data resides in the MasPar; no data ex-

change with the front-end is required.

72 Parallaxis Version 2 User Manual

9 Tools

There are a number of tools in development for Parallaxis. Although they are not yet ready for

public domain distribution with version 2 of the language, we nevertheless feel like introducing

them here.

The Visualizer is a tool for X-window systems, to generate a graphics representation of the net-

work topology of a Parallaxis program. Processing elements are displayed as polygons (de-

pending on the number of links) and may be arranged as a list, ring, or two-dimensional grid.

The positions of the PE-links may be edited with a graphics tool. A typical example is shown

in figure 9.1 . This tool has been implemented by Schulze and Christ and is documented in

[Schulze Christ 90].

Figure 9.1: visualization of a grid topology

Another "tool" is the timing diagram. Actually it's a rather simple program, which extracts in-

formation from the recording file after a simulation run. The data is somewhat adjusted by co-

efficients taking care of different execution times of arithmetic pseudo-assembly commands

versus parallel data exchange, load / store, and reduce commands. The resulting list of activa-

tion values gives at least a rough impression of the load versus time behaviour of a data parallel

program. The data is being fed into a spreadsheet program and gives characteristic curves, re-

vealing program parts with good load values and program parts that may be subject to improve-

ment. Figure 9.2 shows the diagram of the sample sorting program from section 10.4 .

9. Tools 73

 Figure 9.2: timing diagram for sorting program

500

400

300

200

100

0

0 5000 10000 15000 20000 25000 30000

OETS Sorting of 1000 Numbers

A
c
ti
v
e
 P

ro
c
e
s
s
o
rs

Time in Simulated Program Steps

74 Parallaxis Version 2 User Manual

10 Sample Programs

Now, we'd like to show a number of data parallel sample programs. The first will be discussed

on all levels: high level language Parallaxis, intermediate language PARZ, and execution re-

cording. Some example programs have been abbreviated for clarity. You will find the full

source code of all example programs presented in the examples subdirectory of our ftp-server

or on the supplied floppy disk.

10.1 Maximum Search

The first problem is to find the largest element from a set of n2 elements. For demonstration

purposes we do not use the reduction operation which can solve this problem with a single call

in time O(log n2). With n2 processors and disregarding I/O, we complete this task in time O(n),

more accurately in time 2*(n-2).

In the given two-dimensional processor arrangement, first the largest elements are being

pushed from right to left, column by column, each PE selecting the larger of two elements. Af-

ter n-1 steps, the leftmost column contains the largest elements. In the second step, all PEs push

the largest value from top to bottom, until after another n-1 steps the bottom-leftmost element

contains the largest element of the whole matrix. This PE is identified by position [0,0] in Paral-

laxis (dim1 and dim2) and id-number 1 in PARZ (ID).

Figure 10.1: algorithm sketch

The following Parallaxis program implements this algorithm. To show all steps on a low level,

we only use a 3 × 3 matrix.

n-1

Steps

n-1

Steps

Begin

End

10. Sample Programs 75

 10.2: Processing Elements as seen from Parallaxis

Program 1: Find largest element (Parallaxis)

SYSTEM FindMax;

CONST size = 3;

CONFIGURATION grid [size],[size];

CONNECTION right: grid[i,j] -> grid[i,j+1].left;

 left : grid[i,j] -> grid[i,j-1].right;

 up : grid[i,j] -> grid[i+1,j].down;

 down : grid[i,j] -> grid[i-1,j].up;

SCALAR i : integer; (* variable for host *)

VECTOR value,

 buffer: integer; (* variables for each PE *)

BEGIN

 (* Initialize data: each PE gets its id_no as value *)

 PARALLEL (* start parallel execution for all PEs *)

 value := id_no;

 ENDPARALLEL; (* stop parallel execution *)

 (* search maximum from rigth to left *)

 for i:=1 to size-1 do

 PARALLEL

 buffer := value;

 propagate.left(buffer);

 if buffer > value then value := buffer end

 ENDPARALLEL

 end;

 (* search maximum from top to bottom *)

 for i:=1 to size-1 do

 PARALLEL

 buffer := value;

 propagate.down(buffer);

 if buffer > value then value := buffer end

Single processing element

Two-dimensional network

labelled also in two dimensions

with 9 processing elements

PE

up

down

rightleft

2,0 2,1 2,2

1,0 1,1 1,2

0,0 0,1 0,2

76 Parallaxis Version 2 User Manual

 ENDPARALLEL

 end;

 (* the largest value is now in PE (0,0) *)

 store [0],[0] (value, i);

 WriteInt(i,5)

END FindMax.

This program is now being translated into the intermediate language PARZ. This is normally

done by the compiler, but here we did it manually for clarity.

 Figure 10.3: Processing Elements as seen from PARZ

As you can see from fig. 10.2 and fig. 10.3, the parallel system has a much simpler representa-

tion in PARZ than it does in Parallaxis. PEs as well as ports are just labelled from 1 to the num-

ber of PEs / ports.

Program 2: Find largest element (PARZ)

START

9 PE

4 PORTS

SCALAR i 1

VECTOR i 3

 vi0:3 := id + 1; address of right neighbor

 connect 1 to 2 at vi0:3; establish connection

 vi0:3 := id - 1; left neighbor

 connect 2 to 1 at vi0:3;

 vi0:3 := id + 3; up neighbor

 connect 3 to 4 at vi0:3;

 vi0:3 := id - 3; down neighbor

 connect 4 to 3 at vi0:3;

 vi0:1 := id; initialize with PE-id_no

 si0:1 := 1; loop counter right to left

Single processing element

with ports 1 through 4

Two-dimensional network

labelled linearly with

9 processing elements

PE 12

3

4

7 8 9

4 5 6

1 2 3

10. Sample Programs 77

 while si0:1 < 3 call 1;

 si0:1 := 1; loop counter up to down

 while si0:1 < 3 call 2;

 store vi0:1 to si0:1 PE 1; get result from PE No. 1

 write si0:1;

 halt;

 1: proc 1;

 vi0:2 := vi0:1;

 propagate vi0:2 out 2 in 1; propagate values left

 if vi0:2 > vi0:1 call 3; select larger value

 si0:1 := si0:1 + 1; increment counter

 return;

 2: proc 1;

 vi0:2 := vi0:1;

 propagate vi0:2 out 4 in 3; propagate values downward

 if vi0:2 > vi0:1 call 3; select larger value

 si0:1 := si0:1 + 1; increment counter

 return;

 3: proc 2;

 vi0:1 := vi0:2;

 return;

 end;

STOP

The PARZ simulator optionally produces an execution recording. There are different recording

levels possible as discussed in the simulator description.

mode : 2

program : test.z

 1 : VI0:3 := ID + 1; address of right neighbor

 111111111 ;

 2 : CONNECT 1 TO 2 AT VI0:3; establish connection

 111111111 ;

 3 : VI0:3 := ID - 1; left neighbor

 111111111 ;

 4 : CONNECT 2 TO 1 AT VI0:3;

 111111111 ;

 5 : VI0:3 := ID + 3; up neighbor

 111111111 ;

 6 : CONNECT 3 TO 4 AT VI0:3;

 111111111 ;

 7 : VI0:3 := ID - 3; down neighbor

 111111111 ;

78 Parallaxis Version 2 User Manual

 8 : CONNECT 4 TO 3 AT VI0:3;

 111111111 ;

 9 : VI0:1 := ID; initialize with PE-id_no

 111111111 ;

 10 : SI0:1 := 1; loop counter right to left

 11 : WHILE SI0:1 < 3 CALL 1;

 12 : 1 : PROC 1;

 13 : VI0:2 := VI0:1;

 111111111 ;

 14 : PROPAGATE VI0:2 OUT 2 IN 1; propagate values left

 111111111 ;

 15 : IF VI0:2 > VI0:1 CALL 3; select larger value

 111111111 ;

 16 : 3 : PROC 2;

 17 : VI0:1 := VI0:2;

 111111110 ;

 18 : RETURN;

 111111110 ;

 19 : SI0:1 := SI0:1 + 1; increment counter

 20 : RETURN;

 21 : WHILE SI0:1 < 3 CALL 1;

 22 : 1 : PROC 1;

 23 : VI0:2 := VI0:1;

 111111111 ;

 24 : PROPAGATE VI0:2 OUT 2 IN 1; propagate values left

 111111111 ;

 25 : IF VI0:2 > VI0:1 CALL 3; select larger value

 111111111 ;

 26 : 3 : PROC 2;

 27 : VI0:1 := VI0:2;

 111111100 ;

 28 : RETURN;

 111111100 ;

 29 : SI0:1 := SI0:1 + 1; increment counter

 30 : RETURN;

 31 : WHILE SI0:1 < 3 CALL 1;

 32 : SI0:1 := 1; loop counter up to down

 33 : WHILE SI0:1 < 3 CALL 2;

 34 : 2 : PROC 1;

 35 : VI0:2 := VI0:1;

 111111111 ;

 36 : PROPAGATE VI0:2 OUT 4 IN 3; propagate values down

 111111111 ;

 37 : IF VI0:2 > VI0:1 CALL 3; select larger value

 111111111 ;

 38 : 3 : PROC 2;

 39 : VI0:1 := VI0:2;

 111111000 ;

 40 : RETURN;

10. Sample Programs 79

 111111000 ;

 41 : SI0:1 := SI0:1 + 1; increment counter

 42 : RETURN;

 43 : WHILE SI0:1 < 3 CALL 2;

 44 : 2 : PROC 1;

 45 : VI0:2 := VI0:1;

 111111111 ;

 46 : PROPAGATE VI0:2 OUT 4 IN 3; propagate values down

 111111111 ;

 47 : IF VI0:2 > VI0:1 CALL 3; select larger value

 111111111 ;

 48 : 3 : PROC 2;

 49 : VI0:1 := VI0:2;

 111000000 ;

 50 : RETURN;

 111000000 ;

 51 : SI0:1 := SI0:1 + 1; increment counter

 52 : RETURN;

 53 : WHILE SI0:1 < 3 CALL 2;

 54 : STORE VI0:1 TO SI0:1 PE 1; get result from PE 1

 100000000 ;

 55 : WRITE SI0:1;

output: 9

 56 : HALT;

10.2 Image Rotation

The problem is to turn a raster picture on a two-dimensional grid about an angle of 90o clock-

wise. One solution is to divide the picture in four quadrants, exchange their data cyclically and

iterate the procedure at half grain size until the pixel-level is reached. Each quadrant may be

computed independently of the other three quadrants, so this task can be solved in parallel.

This algorithm is described for Smalltalk by Goldberg and Robsen in "Smalltalk 80, The Lan-

guage and its Implementation".

Programm 3: Image Rotation

SYSTEM image_rot;

CONST m_size = 1024;

CONFIGURATION Pic [m_size],[m_size];

CONNECTION right : Pic [i, j] <-> Pic [i, j+1].left;

 up : Pic [i, j] <-> Pic [i+1, j].down;

VECTOR color, buffer, b2: integer;

PROCEDURE rotate (SCALAR pic_size: integer);

(* assumtion: pic_size = 2^k *)

SCALAR size2: integer;

VECTOR x,y : integer;

80 Parallaxis Version 2 User Manual

BEGIN

 WHILE pic_size > 1 DO

 size2 := pic_size div 2;

 PARALLEL

 y := dim1 mod pic_size;

 x := dim2 mod pic_size;

 IF x < size2 THEN propagate.up ^size2 (color,buffer);

 IF y >= size2 THEN b2 := buffer END

 ELSE propagate.down^size2 (color, buffer);

 IF y < size2 THEN b2 := buffer END

 END;

 IF y < size2 THEN propagate.left^size2 (color, buffer);

 IF x < size2 THEN b2 := buffer END

 ELSE propagate.right^size2 (color, buffer);

 IF x >= size2 THEN b2 := buffer END

 END;

 color := b2; (* copy new value *)

 ENDPARALLEL;

 pic_size := size2

 END (* while *)

END rotate;

BEGIN

 ... (* load picture *)

 rotate(m_size); (* rotate picture *)

 ... (* display picture *)

END image_rot.

Stepwise Algorithm Illustration:

In the initial picture, the "arrow" points to the lower left. Divided into four

quadrants, the image data is cyclically being exchanged. The next recursive

steps will be in parallel with decreasing side length.

Initial Picture Cyclic data transfer during the first step

10. Sample Programs 81

While the first step produces an apparent mess, the following steps give the

desired result. The "arrow" now points to the upper left corner. For n pixels,

we needed log2(n)/2 steps to complete the algorithm.

 Figure 10.4: Illustrating the Rotate-Algorithm

10.3 Prime Numbers

The sieve of Eratosthenes is one of the classical demonstrations of parallel algorithms. Please

note that there are no connections needed to solve this problem!

Program 4: Generating prime numbers with the sieve of Eratosthenes

SYSTEM Sieve;

CONFIGURATION List [1..1000];

CONNECTION (* none *);

SCALAR prime : integer;

VECTOR candidate: boolean;

BEGIN

 PARALLEL

 candidate := id_no >= 2;

 WHILE candidate DO

 prime := REDUCE.First(id_no);

 WriteInt(prime, 5);

 IF id_no MOD prime = 0 (* remove multiples *)

 THEN candidate := FALSE

 END

 END

 ENDPARALLEL

END Sieve.

The while loop will be executed as long as at least a single candidate-PE remains, i.e. the vec-

tor candidate has value true for at least one PE. All PEs excluded from the while loop

are disabled. The if-selection removes all multiples of a prime in constant time.

1. step 2. step 3. step

82 Parallaxis Version 2 User Manual

10.4 Sorting

Odd-Even Transposition Sorting (OETS), a.k.a. "parallel bubble-sort" is a well-known parallel

algorithm in the literature. With n processors it is possible to sort n numbers in time O(n). All

PEs are linked in a linear chain. The algorithm executes n steps, each consuming constant time.

During odd steps, the PE pairs 1-2, 3-4, and so on are compared in parallel, while in even steps

the PE pairs 2-3, 4-5, and so on are handled.

Each PE holds one component of the vector val to be sorted as well as copies of the left and

right neighbor's values. The vector swap is a marker for exchanges occurred which have to be

completed at the right neighbor-PE.

Program 5: Odd-Even Transposition Sorting

SYSTEM Sort;

CONST n = 1000;

CONFIGURATION list [1..n];

CONNECTION left : list[i] -> list[i-1].right;

right: list[i] -> list[i+1].left;

SCALAR k : integer;

VECTOR val,r,l : integer;

 swap : boolean;

BEGIN

... (* read input data *)

 FOR k:=1 TO n DO

 PARALLEL

 PROPAGATE.right(val,l);

 PROPAGATE.left (val,r);

 (* l/r hold the value of the left/right neighbor *)

 swap := false;

 IF odd(k) THEN (* compare 1-2, 3-4, ... *)

Numbers distributed on PEs

4 5 2 1 3

4 5 1 2 3

4 1 5 2 3

1 4 2 5 3

1 2 4 3 5

1 2 3 4 5

3. odd

4. even

5. odd

2. even

1. odd

Steps

10. Sample Programs 83

 IF odd(dim1) AND (r < val) THEN

 val := r;

 swap := true

 END

 ELSE (* even (k) compare 2-3, 4-5, ... *)

 IF even(dim1) AND (r < val) THEN

 val := r;

 swap := true

 END;

 END;

 PROPAGATE.right(swap);

 IF swap AND (id_no > 1) THEN val := l END;

 ENDPARALLEL

 END;

... (* write output data *)

END Sort.

A more sophisticated version of the same program is shown in program 6. In this version by

Claus Brenner from Universität Stuttgart, the connection structure is adapted ideally for the

odd/even data exchange. Therefore, it requires only one third of the propagate operations of

program 5.

Program 6: An Optimized Version of Odd-Even Transposition Sorting

SYSTEM OETSort;

CONST n = 10;

CONFIGURATION chain [1..n];

CONNECTION

oddout: chain[i] -> {odd(i) } chain[i+1].oddin,

 {even(i)} chain[i-1].oddin;

 evenout: chain[i] -> {even(i)} chain[i+1].evenin,

 {odd(i) } chain[i-1].evenin;

SCALAR k : INTEGER;

VECTOR val, temp: INTEGER;

BEGIN

 ... (* read input data & LOAD *)

 FOR k:=1 TO (n+1) DIV 2 DO

 PARALLEL

 (* ODD step *)

 propagate.oddout(val,temp);

 IF odd(id_no) = (val > temp) THEN val:=temp END;

 (* EVEN step *)

 propagate.evenout(val,temp);

 IF even(id_no) = (val > temp) THEN val:=temp END;

 ENDPARALLEL

 END;

 ... (* STORE & write output data *)

END OETSort.

84 Parallaxis Version 2 User Manual

10.5 Numeric Integration

The value of ¹ may be approximated by numeric integration as shown in the formula and the

diagram of fig. 10.5. The Parallaxis program is simple and explains itself; there are no con-

nections required between PEs. This algorithm was used as a reference by R. Babb [Babb 88].

However, since the problem is fairly simple and does not need any inter-processor communi-

cation at all, its value as a reference is most doubtful!

Figure 10.5: Approximation of pi

Program 7: Approximating pi by numeric integration

SYSTEM compute_pi;

CONST interval = 1000;

 width = 1.0 / float(interval);

CONFIGURATION list [1..interval];

CONNECTION (* none *);

VECTOR val: real;

PROCEDURE f (VECTOR x: real): VECTOR real;

(* function to be integrated *)

BEGIN

 RETURN(4.0 / (1.0 + x*x))

END f;

BEGIN

 PARALLEL

 (* integral approximation with rectangle-rule *)

 val := width * f((float(id_no)-0.5) * width);

 ENDPARALLEL;

 WriteReal(REDUCE.sum(val), 15);

END compute_pi.

10.6 Cellular Automata

A cellular automaton almost perfectly reflects Parallaxis' model of an SIMD hardware. We

have a number of independently operating entities, all with the same "program" and intercon-

nected by a characteristic symmetrical pattern of links. The program below produces one of

these nice triangular patterns. Other automata, like the "Game of Life" or the "Hodge-Podge-

Machine" may be implemented with simple modifications to this program, reflecting the new

4

2

0 0 0,5 1

π 4

1 x
2+

dx

0

1

∫=

10. Sample Programs 85

building rules.

Program 8: A simple cellular automaton

SYSTEM cell;

CONST n = 79; (* number of elements *)

 m = 50; (* number of steps *)

CONFIGURATION list [1..n];

CONNECTION left: list[i] -> list[i-1] .right;

 right: list[i] -> list[i+1] .left;

SCALAR i : integer;

VECTOR val,l,r: boolean;

...

BEGIN

 PARALLEL (* Init *)

 val := false;

 ENDPARALLEL;

 PARALLEL [n div 2] (* middle *)

 val := true;

 ENDPARALLEL;

 FOR i:= 1 TO m DO

 out; (* omitted / to display current state *)

 PARALLEL

 propagate.left (val,l);

 propagate.right(val,r);

 val := l<>r;

 ENDPARALLEL;

 END;

END cell.

10.7 Fractal Geometry

The following parallel algorithm is based on the sequential algorithm for constructing a fractal

curve by midpoint displacement which is shown by Peitgen and Saupe in "The Science of Frac-

tal Images". The parallel version developed by Thomas Bräunl uses a tree structure to generate

the fractal curve at increasing detail. Again, the recursive nature of the problem could be ex-

pressed by a simple parallel iteration in procedure "MidPointRec".

Program 9: Generating a fractal curve

SYSTEM fractal;

CONST maxlevel = 7;

(* binary tree structure *)

CONFIGURATION tree [1..2**maxlevel -1];

CONNECTION son_l : tree[i] -> tree[2*i].father;

 son_r : tree[i] -> tree[2*i+1].father;

 father: tree[i] -> {even(i)} tree[i div 2].son_l,

 {odd(i)} tree[i div 2].son_r;

86 Parallaxis Version 2 User Manual

SCALAR i,j : integer;

 delta : real;

 field : ARRAY [1..2**maxlevel-1] OF real;

VECTOR x, low, high: real;

PROCEDURE Gauss(): VECTOR real;

(* special random number generator, not further discussed

here *)

PROCEDURE MidPointRec(SCALAR delta: real; SCALAR level:

integer);

SCALAR min, max, max2 : integer;

BEGIN

 (* select tree level: 2^(level-1) <= id_no <= 2^level -

1 *)

 min := 2**(level-1);

 max := 2 * min - 1;

 max2:= 2 * max + 1;

 PARALLEL

 (* current tree level only *)

 IF min <= id_no <= max THEN

 x := 0.5 * (low + high) + delta*Gauss();

 END;

 (* select next level also for data propagation *)

 IF min <= id_no <= max2 THEN

 propagate.son_l(low);

 propagate.son_r(high);

 propagate.son_l(x);

 propagate.son_r(x);

 IF even(id_no) THEN high:=x ELSE low:=x END;

 END

 ENDPARALLEL

END MidPointRec;

BEGIN (* main program *)

 Init;

 FOR i:=1 TO maxlevel DO

 delta := 0.5 ** (float(i+1)/2.0);

 MidPointRec(delta,i);

 END;

 ... (* output data *)

END fractal.

10. Sample Programs 87

Figure 10.6: Sample fractal curve

The curve displayed in fig. 10.6 was created by using the program above. The program uses a

Gaussian-weighted random function not further discussed here.

10.8 Systolic Matrix-Multiplication

Fig. 10.7 explains the systolic behaviour of the matrix multiplication algorithm implemented

below. The algorithm idea was taken from Shapiro's "Concurrent Prolog" and translated into

Parallaxis. But only after modifications by Ingo Barth, the program produced reasonable per-

formance results.

 Figure 10.7: Computation Schema of systolic matrix multiplication

ann

Input matrix A

Input matrix B

Processor array and result matrix C

11b

nnb

a 11

×
×

× × ×
×

× × ×
×
×

×

• • • •

• • • •

• • • •

• • •Ê•

 •

 •Ê•

 • • •

• • • •

• • •

• •

•

 • • • •

 • • •Ê•

 • • • •

• • • •

C := A * B

88 Parallaxis Version 2 User Manual

Program 10: Systolic Matrix Multiplication

SYSTEM systolic_array;

CONST max = 10;

TYPE matrix = ARRAY [1..max],[1..max] OF REAL;

CONFIGURATION grid [max],[max];

CONNECTION

 left : grid[i,j] -> grid[i,(j-1) MOD max].left;

 up : grid[i,j] -> grid[(i-1) MOD max,j].up;

 shiftA : grid[i,j] -> grid[i,(j-i) MOD max].shiftA;

 shiftB : grid[i,j] -> grid[(i-j) MOD max,j].shiftB;

SCALAR i,j : INTEGER;

 a,b,c : matrix;

PROCEDURE matrix_mult(SCALAR VAR a,b,c : matrix);

(* c := a * b *)

SCALAR k: INTEGER;

VECTOR ra,rb,rc : REAL;

BEGIN

 LOAD (ra,a);

 LOAD (rb,b);

 PARALLEL

 PROPAGATE.shiftA(ra);

 PROPAGATE.shiftB(rb);

 rc := ra * rb;

 FOR k := 2 TO max DO

 PROPAGATE.left(ra);

 PROPAGATE.up(rb);

 rc := rc + ra * rb;

 END;

 ENDPARALLEL;

 STORE(rc,c);

END matrix_mult;

BEGIN

 ... (* input matrices *)

 matrix_mult(a,b,c);

 ... (* output result *)

END systolic_array.

11. Parallaxis Applications 89

11 Parallaxis Applications

Since the first release of Parallaxis, we had quite a large number of students who developed Par-

allaxis applications as their term project or Master's thesis. Here, we would like to introduce a

few of this growing number. We do not repeat the source code, as we did in chapter 10, but we

will give some information on each individual application. All application programs are avail-

able from our ftp-server or on floppy disk.

11.1 Stereo Vision

The processing of images is an application which is ideally suited for data level parallelism. An

image is stored as an array of picture elements, or pixels. E.g., a picture with 256 pixels width

and 256 pixels heigth has a total of 65,536 data elements. Each of them contains information

about color and brightness. Processing an image normally means to perform a quite simple op-

eration on each pixel or a very small region around it. This can be done very efficiently on mas-

sively parallel computers like the Connection Machine or the MasPar in combination with a

parallel programming language like Parallaxis.

As a first step to compute depth information, we decided to work with random-dot stereograms.

In these pictures, the monocular information is completely absent and they have perfectly con-

trolled properties to find out how binocular localization resolves ambiguities. However, right

now we are also working with scanned real world pictures, especially aerial pictures.

The figures below show such a pair of stereograms together with their solution computed by a

Parallaxis program. The two random dot arrays are identical except for a pattern which is hori-

zontally shifted several pixels in one array. People who are able to "cross their eyes" (by focus-

sing to a distant point) can recognize the pattern without tools (prism or red-green glasses).

Figure 11.1: Stereo Image Pair

Left Picture Right Picture

90 Parallaxis Version 2 User Manual

 Figure 11.2: Computed Depth Information

The depth perception algorithm works as follows. First, both arrays are mapped one over the

other. Then, the right eye's array is shifted stepwise to the right. At each step, every pixel cal-

culates whether the current level is a possible depth position. After the shifting phase, each pix-

el may have several possible depth locations. Checking also the neighbor-pixels' results allows

a rather exact determination of which depth level it belongs to.

Now, let us take a look at the efficiency of this algorithm. The simulation of the example shown

requires 57,600 virtual processing elements. Only the major routines were measured, input and

output was disregarded. The number of program steps is quite low, while the overall processor

load of 74% gives extremely good results! Assuming your parallel computer performs one as-

sembly command in a microsecond, it would take less than 1.5 milliseconds to compute the

complete stereo image.

The stereo matching algorithm has been programmed by Karsten Krauskopf [Krauskopf 90].

11.2 Hidden-Surface and Ray Tracing Algorithms

Another field of applications surveyed in Parallaxis are graphics algorithms. Among this group

of algorithms especially the hidden surface algorithms have been examined. These have the

purpose to determine the visible surfaces from a given three-dimensional scene and project

them on an image plane. There are algorithms which examine the surfaces in three-dimensional

space, such as the Z-buffer algorithm, and other algorithms, e.g. scan line, which determine the

visibility in image space.

These algorithms, as described in Foley, van Dam: "Introduction to Computer Graphics", are

being examined with regard to parallelism. The Z-buffer algorithm works with a two-dimen-

sional field of memory, which has one entry for each pixel, containing the actual color and the

Z-value. For all surfaces successively, each surface pixel's depth value is compared to the local

11. Parallaxis Applications 91

Z-buffer value and, if appropriate, color and Z-value are adjusted. This problem is solved in

parallel with a field of processor elements (PE), each representing a single pixel. So all pixels

covered by one polygon can be examined in a single step and the task is completed in time O (p)

for p polygons.

Another possibility is to employ one PE per polygon, to determine first the covering polygons

and then the visible polygon for each pixel in parallel. This step takes time O (log2(p)) for each

pixel so the whole task needs time O (n2*log2(p)).

With regard to the time complexity, it is better to take the first approach, because the run time

is only proportional to the number of polygons. But in parallel processing also the number of

active PEs in each step is an important aspect. So in scenes with a very homogeneous distribu-

tion of small polygons, the second algorithm is better suited, because all PEs have to determine

for each pixel whether their polygons are active.

Scan line algorithms work on all polygons at once, processing one image line after another.

Each scanline is divided by crossing edges (so called active edges) into spans. When processing

a line, the color has to be determined only at the beginning of a span, because the whole span

has the same color. The information of active polygons inside each span has to be moved from

one span to the next one, so that for each span the active polygons are known. Because of this

dependency, processing of spans in parallel does not give good load results. However, it is ob-

vious that we can work on all scan lines in parallel, using one PE for each line. So the overall

time needed to solve this problem is proportional to the time needed to process the most com-

plex scan line.

Ray tracing algorithms can be parallelized as well. In our approach, each PE traces a single ray

into the scene. We can handle spheres and polygons in the scene file represented in NFF

(Haines' Neutral File Format). The overall time for ray tracing a scene is the time needed for

the most complex ray to compute.

92 Parallaxis Version 2 User Manual

Two sample images created by a Parallaxis hidden-surface program and ray tracing program

are shown below.

 Figure 11.3: rendered images from scene descriptions

The hidden-surface and ray tracing algorithms have been programmed by Sabine Liebelt

[Liebelt 91].

11.3 Solving Linear Equation Systems

This application program solves a linear equation system by applying a massively parallel ver-

sion of the Gaussian elimination algorithm. There are n × (n+1) PEs used, one for each coeffi-

cient. The program operates in two phases: first the transformation of the coefficient matrix into

a triangular matrix, then the resubstitution of the component solutions from back to front.

Two kinds of parallel algorithms have been implemented and tested: the Gaussian elimination

and the Gauss–Jordan method. Two different kinds of algorithms for the Gaussian elimination

are implemented, one with few processor elements O(n) and one with many processor elements

O(n2). For the Gauss Jordan method two algorithms have been implemented, also with diffe-

rences in the number of processor elements. The Gaussian elimination and the Gauss Jordan

method are similar, the differences of the algorithms are shown in the table below. Only the

Gauss algorithm is included in the Parallaxis applications.

11. Parallaxis Applications 93

The test results are as follows:

The linear equation solver has been programmed by Reinhard Verba [Verba 90].

11.4 Fast Fourier Transformation

The Fast Fourier Transformation requires complex valued multiplications and additions. The

algorithm distributes the n input values to the n PEs, computes the solutions locally for each PE

with an iteration, and returns these solutions. The time required for these computations is O(n*-

log(n)).

The discrete Fourier transform and the fast Fourier transform have been compared in the table

below.

The test results are as follows:

This shows that the DFT is faster because of the use of the larger number of processor elements,

whereas the fast Fourier transform is more efficient in average PE usage (load). Only the FFT

algorithm is included in the Parallaxis applications.

The fast fourier transformation algorithm has been programmed by Reinhard Verba [Verba 90].

11.5 Simulated Annealing

Simulated Annealing is an heuristical approach for solving NP-complete problems. The best

parameter values of a complex system are searched in a local neighborhood area. To prevent

being caught in a local minumum, a temperature function is added. In the beginning, the system

is heated up, allowing a high percentage of random moves that do not have to improve the pa-

rameters. While gradually decreasing the temperature towards the freezing point, less and less

random moves are allowed, and the system is slowly converging to lower energy values, repre-

senting better results.

Since the structure of this heuristics is sequential (we cannot compute the cooling phase before

Gauss Algorithm version 1 version 2

number of PEs 650 26

time steps 44,928 264,324

program steps 21,355 118,299

average of use the PE in percent 37.8 49.6

Fourier Algorithms FFT DFT

number of PEs 64 4096

time steps 26,621 16,249

program steps 14,249 4,525

average of use the PE in percent 55.2 22.1

94 Parallaxis Version 2 User Manual

heating up the system), we applied the same structure to our SIMD Parallaxis program. The

only chance to apply massive parallelism, is in the computation of the energy function. Several

problems suited for simulated annealing have been studied with this parallel program. The re-

sults were that using a massively parallel architecture for simulated annealing pays off only for

very complex problems, like the chip placement problem with a high degree of interdependen-

cies. The less complex travelling salesperson problem may as well be computed on a sequential

hardware with simulated annealing. The simplicity of the energy function (here: the tour

length) does not require a large number of PEs

The simulated annealing algorithm has been programmed by Volker Walter [Walter 91].

11.6 The n-Body Problem

Lastly, the n-body problem is to simulate a number of n masses in space, influencing each other

(e.g. this could be the sun and the planets of our solar system). All n bodies are linked with the

appropriate n2 interactions. The Parallaxis implementation of this problem gives a good illus-

tration for using multiple configurations (here: bodies and interactions) and multiple connec-

tions (1:n) in a program.

The n-body problem has been derived from an algorithm Rose and Steele in [Rose Steele 87]

by Frank Sembach with some amendings by Ingo Barth.

95 Parallaxis Version 2 User Manual

